
 Worldcoin Orb AppSec Code Review
 Security Assessment

 February 20, 2024

 Prepared for:

 Daniel Girshovich

 Tools for Humanity

 Prepared by: Dominik Czarnota, Artur Cygan, and Jack Leightcap

Bi
tK
E

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 497 Carroll St., Space 71, Seventh Floor
 Brooklyn, NY 11215
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Notices and Remarks

 Copyright and Distribution
 © 2024 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to Tools for
 Humanity under the terms of the project statement of work and has been made public at
 Tools for Humanity’s request. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Project Summary 5
 Executive Summary 6
 Project Goals 8
 Privacy and Security Claims 9

 Claim 1: For the default opt-out signup flow, no PII except the iris code is sent by the
 Orb 10
 Claim 2: For the non-default opt-in signup flow, PII is handled securely by the Orb 11
 Claim 3: The Orb does not extract any sensitive data from a user’s device 12
 Claim 4: The user’s iris code is handled securely 13

 Project Targets 14
 Project Coverage 16
 Automated Testing 17
 Summary of Findings 18
 Detailed Findings 20

 1. User data may persist to disk if the swap space is ever configured 20
 2. Risk of wrong SSD health check space reported due to integer overflow 21
 3. An expired token for a nonexistent API checked into source code 23
 4. Memory safety issues in the ZBar library 25
 5. The Orb QR code scanner is configured to detect all code types 27
 6. Core dumps are not disabled 29
 7. World writable and readable sockets 30
 8. Opportunities to harden the static kernel configuration and runtime parameters
 32
 9. The downloaded list of components to update is not verified 34
 10. Security issues in the HTTP client configuration 36
 11. External GitHub CI/CD action versions are not pinned 39
 12. The deserialize_message function can panic 41

 A. Vulnerability Categories 42
 B. ZBar Library Fuzzing 44
 C. Kernel Configuration Hardening Recommendations 45
 D. systemd Security Analysis 46

 Trail of Bits 3 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 E. Fix Review Results 49
 Detailed Fix Review Results 50

 F. Fix Review Status Categories 53

 Trail of Bits 4 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Project Summary

 Contact Information
 The following project manager was associated with this project:

 Jeff Braswell , Project Manager
 jeff.braswell@trailofbits.com

 The following engineering director was associated with this project:

 Anders Helsing , Engineering Director, Application Security
 anders.helsing@trailofbits.com

 The following engineers were associated with this project:

 Dominik Czarnota , Consultant Artur Cygan , Consultant
 dominik.czarnota@trailofbits.com artur.cygan@trailofbits.com

 Jack Leightcap , Consultant
 jack.leightcap@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 August 14, 2023 Pre-project kickoff call

 August 14, 2023 Status update meeting #1

 August 21, 2023 Status update meeting #2

 August 28, 2023 Delivery of report draft; report readout meeting

 September 15, 2023 Delivery of updated report

 October 10, 2023 Delivery of updated report incorporating client feedback

 December 15, 2023 Delivery of draft fix review addendum

 February 20, 2024 Delivery of comprehensive report

 Trail of Bits 5 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Executive Summary

 Engagement Overview
 On behalf of the Worldcoin Foundation (the "Foundation"), Tools for Humanity (TFH)
 engaged Trail of Bits to review the software running on the Worldcoin Orb device and its
 privacy and security claims. The Orb, a Foundation asset, contains a set of cameras that are
 used to ensure the uniqueness and realness of participants who sign up in the Worldcoin
 network to obtain a World ID. The Orb’s function is to verify unique humanness. To do this,
 it scans a QR code provided by the user on a phone, analyzes the user’s iris, generates a
 unique iris code, and sends “iris data” along with the user’s identity commitment to the
 Orb’s back end.

 A team of three consultants conducted the review from August 7 to August 26, 2023, for a
 total of six engineer-weeks of effort. Our testing efforts focused on validating a list of
 security and privacy claims and assessing the security of the Orb software and its operating
 system. With full access to source code and documentation and shell access to two devices
 (development and production), we performed static and dynamic testing of the provided
 codebase, using automated and manual processes. The review concerned only the
 software running on the Orb device and developed by TFH and did not include any of the
 back-end code.

 Observations and Impact
 Although findings TOB-ORB-4 and TOB-ORB-5 , TOB-ORB-10 , and TOB-ORB-11 describe
 potential attack surfaces and are of high or medium severity, our analysis did not uncover
 vulnerabilities in the Orb’s code that can be directly exploited in relation to the Project
 Goals as described. We provide recommendations for hardening the kernel configuration
 in appendix C .

 Recommendations
 Based on the findings identified during the security review, Trail of Bits recommends that
 TFH take the following steps:

 ● Remediate the findings disclosed in this report. These findings should be
 addressed as part of a direct remediation or as part of any refactor that may occur
 when addressing other recommendations.

 ● Fuzz the native libraries that take untrusted input.

 ● Use taint tracking to ensure that user eye images or iris codes are never used
 in unexpected ways. While we did not find issues with the incorrect use of
 personally identifiable information (PII) or iris codes, a future code change could
 introduce such issues. To prevent this, we recommend researching and using taint

 Trail of Bits 6 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 tracking solutions to ensure that this data is never used incorrectly (for example,
 that it is never passed to logging functions). While we have not found a robust
 solution for implementing taint tracking in Rust, projects such as LiHRaM/taint ,
 facebookexperimental/MIRAI , and willcrichton/flowistry (or their
 example specifically) may be useful.

 ● Further harden the systemd services and Linux kernel used by the Orb. For
 example, many of the TFH services running on the device (those listed in appendix
 D) could be further hardened if the “no new privileges” flag were enabled. The
 kernel could be further hardened by implementing the recommendations provided
 in TOB-ORB-8 .

 The following tables provide the number of findings by severity and category.

 EXPOSURE ANALYSIS
 Severity Count

 High 1

 Medium 3

 Low 1

 Informational 6

 Undetermined 1

 CATEGORY BREAKDOWN
 Category Count

 Audit and Logging 1

 Configuration 5

 Cryptography 1

 Data Exposure 2

 Data Validation 2

 Patching 1

 Trail of Bits 7 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Project Goals

 The engagement was scoped to provide a security assessment of the Worldcoin Orb
 software. Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Can we break any of the Worldcoin Orb privacy and security claims?

 ● Is PII handled securely? Is it prevented from persisting on the device?

 ● Are all inputs validated properly?

 ● Can a malicious user-provided QR code or other image exploit the device?

 ● Are the iris images encrypted such that the device cannot decrypt them when they
 are sent to the back end during an opt-in signup flow?

 ● Is the communication with the back end encrypted end-to-end with mutual
 authentication?

 ● Is the data sent to the back end signed to ensure that the back end is
 communicating with a legitimate device?

 ● Is the over-the-air update mechanism secure?

 ● Is any sensitive information leaked to logs or to the Datadog metrics service?

 ● Is the device configuration secure and hardened?

 Trail of Bits 8 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Privacy and Security Claims

 As part of the engagement, we sought to validate a list of technical privacy and security
 claims from TFH. This section lists those claims and includes our analysis of them.

 Non-Goals
 The following items were out of scope for this analysis, as agreed with TFH:

 ● “Proving” any of the claims definitively

 ● Attestation that specific Orb devices in the field adhere to any such claims

 ● Claims about the privacy and security of past or future versions of the Orb software

 ● Quantifying potential harms associated with malicious Foundation/TFH employees

 ● Hardware-related safety claims (e.g., eye safety)

 Trail of Bits 9 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Claim 1: For the default opt-out signup flow, no PII except the iris code
 is sent by the Orb
 We sought to validate the following:

 ● No PII is written to persistent storage on the Orb.

 ● No PII except the iris code leaves the Orb (e.g., is sent over the network).

 Analysis
 The Orb scans the QR code provided by the user and analyzes their iris for uniqueness and
 humanness. The QR code encodes information such as the user’s ID and data policy
 (whether they opt in to or opt out of encrypting and sending their eye image data to the
 back end). The eye iris images are used to compute an iris code, which is then used to know
 whether a given set of eyes is already registered. The signup flow sends the user ID and the
 eyes pipeline data (which includes iris processing software versions, iris codes, and, for
 opt-in users, eye images) along with the operator’s ID, the Orb device ID, the software
 version, and a signature. The signature is computed based on a SHA-256 hash of the Orb
 device ID, the user ID, and the eyes pipeline data using the orb -sign-iris-code binary.
 This binary (which was not within the scope of this audit) uses the secure element to
 compute the signature. If the user uses the default opt-out signup flow, the Orb does not
 send the encrypted eye images to the back end or persist them to disk.

 We did not find that any PII data is written to persistent storage or that other user data
 leaves the Orb in any way in the audited version of the software. However, there is a risk
 that PII data could persist to disk in the future if swap space is ever enabled on the Orb
 device (it is currently disabled) (TOB-ORB-1) or if a core dump of the Orb processes is ever
 generated (TOB-ORB-6). While those are not currently security issues, PII data persistence
 due to future configuration changes can be prevented by following the recommendations
 provided for those findings.

 Trail of Bits 10 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Claim 2: For the non-default opt-in signup flow, PII is handled securely
 by the Orb
 We sought to validate the following:

 ● The only PII persisted on the device is on the Orb’s SSD and is encrypted.

 ● Encrypted PII stored on the Orb’s SSD cannot be decrypted by the Orb.

 Analysis
 The encryption functionality is well defined in the image_saver module, in which the
 frames are encrypted and stored on the Orb’s SSD. We did not identify any places where PII
 is persisted outside of the Orb’s SSD and/or unencrypted.

 The encryption is performed with the sealed box cryptographic construction from
 libsodium, a widely used and well-regarded library in the community. The public key of the
 recipient is hard-coded in the Orb’s code under the WORLDCOIN_ENCRYPTION_PUBKEY
 constant, and the corresponding private key is not present in the production build. The
 libsodium library internally generates an ephemeral key pair that is destroyed right after
 the encryption process. To summarize, once PII is encrypted, the described mechanism
 does not permit the Orb to decrypt it.

 Trail of Bits 11 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Claim 3: The Orb does not extract any sensitive data from a user’s
 device
 We sought to validate the following:

 ● The only information the Orb receives from a user’s phone is in the QR code.

 Analysis
 We analyzed the services running on the device, its exposed ports, and the Orb software,
 and we did not identify any process or functionality of the Orb software and operating
 system that would break this claim; note, however, that we did not perform an exhaustive
 and adversarial analysis (that is, we assumed good intentions, and we did not look for
 malware or rootkits on the devices that we had access to).

 We did find an issue with the QR scanner in use: the ZBar library’s decoder is configured so
 that it will scan not only QR codes but also other barcode types (TOB-ORB-5).

 Trail of Bits 12 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Claim 4: The user’s iris code is handled securely
 We sought to validate the following:

 ● The user’s iris code is not written to persistent storage on the Orb.

 ● The user’s iris code is included only in a single request to the Orb’s back end.

 ● The user’s iris code cannot be extracted from the Orb’s network traffic.

 Analysis
 During our code review, we found that the iris code is used in the following places:

 ● It is logged if the orb-core codebase is built with the log-iris-data feature, but
 this feature is not enabled on production builds (which are built through the Nix
 package manager and the orb-core/flake.nix description).

 ● It is used to compute the signature sent to the back end. Specifically, the iris code is
 hashed along with other data with the SHA-256 algorithm, and the result is
 Base64-encoded and then passed to the orb-sign-iris-code program to
 compute the final signature sent to the back end.

 ● It is sent in a single request to the Orb’s back end.

 From our analysis, we believe the iris code is not written to persistent storage on the Orb
 and that it is included only in a single request to the Orb’s back end.

 For its network communication, the orb-core codebase enforces HTTPS only and trusts
 only two root certificates (from Amazon and Google Trust Services). While this
 configuration can be improved to make it more secure (TOB-ORB-10), it should not be
 possible for typical attackers to extract the iris code from the Orb’s network traffic; the
 attacker would have to be in control of one of the trusted certificates.

 Trail of Bits 13 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Project Targets

 The engagement involved a review and testing of the Imaginative Imp (3.0.10) release of
 the Orb software, including its custom user-space applications written in Rust and custom
 Linux distribution based on Debian.

 TFH provided us with the worldcoin-tob-privacy-audit repository (commit
 2ccc3c01f7bc7103831d49c25382b7cca9ce3ee2), containing the codebases listed
 below.

 We also received SSH access to two Orb test devices with development and production
 configurations. The production configuration was specifically unfused to allow for SSH
 access, as SSH is disabled on production devices according to TFH.

 orb-core
 Type Rust

 Purpose The main process of the orb; processes camera streams (scanning of QR
 codes and users’ irises); interfaces with neural networks;
 manages back-end communication for signups

 orb-update-agent
 Type Rust

 Purpose Handles over-the-air updates

 orb-supervisor
 Type Rust

 Purpose Manages resources and timing between the other processes

 ai-models
 Type Python

 Purpose Neural network libraries utilized by orb-core

 plug-and-trust
 Type C

 Purpose Builds the tool for signing iris codes (orb-secure-element);
 out of scope for the audit; listed here for completeness

 Trail of Bits 14 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 orb-mcu-util
 Type Rust

 Purpose Allows basic access and logging of the MCUs;
 out of scope for the audit; listed here for completeness

 Additionally, the following targets or areas were identified as explicitly out of scope for this
 engagement:

 ● The bootloader configuration

 ● Driver modifications

 ● TrustZone applets

 ● The secure element interface

 ● Hardware

 ● Any possible attacks that could be carried out by malicious employees (as agreed
 with TFH on the engagement’s kickoff call, and as stated under the non-goals of the
 Privacy and Security Claims section)

 Trail of Bits 15 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches included the following:

 ● Review of the user signup flow and the way the obtained data (QR codes and iris
 images) is handled

 ● Analysis of the device environment, its running services and configuration, and its
 permissions and kernel configuration

 ● Review of the orb-supervisor and orb-update-agent services

 ● Fuzzing of ZBar, the QR code scanning library in use

 ● Investigation of taint tracking tools for Rust, which would help with ensuring that
 input data is not handled in an unexpected way (e.g., is not exposed in logs or
 persisted to disk)

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. During this project, we were unable to perform comprehensive testing of the
 following system elements, which may warrant further review:

 ● The ai-models neural network Python libraries

 ● Native dependencies used by the Orb, such as the Thermal Camera SDK, Aruco,
 Alsa, gstreamer, and video4linux

 Trail of Bits 16 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Automated Testing

 Trail of Bits uses automated techniques to extensively test the security properties of
 software. We use both open-source static analysis and fuzzing utilities, along with tools
 developed in house, to perform automated testing of source code and compiled software.

 Test Harness Configuration
 We used the following tools in the automated testing phase of this project:

 Tool Description Policy

 Semgrep An open-source static analysis tool for finding bugs and
 enforcing code standards when editing or committing code
 and during build time

 Semgrep Pro
 rules for Rust

 libFuzzer An in-process, coverage-guided, evolutionary fuzzing
 engine that can automatically generate a set of inputs that
 exercise as many code paths in the program as possible

 Appendix B

 Areas of Focus
 Our automated testing and verification work focused on the following system properties:

 ● The program does not access invalid memory addresses.

 ● The program does not exercise undefined behavior.

 ● The program does not use unsafe functions or constructs.

 Fuzzing Harnesses
 The following are the fuzzing harnesses we developed that exercise a subset of the
 program’s code.

 Property Tool Result

 ZBar’s decoder: A fuzzer against ZBar’s decoder libFuzzer TOB-ORB-4 ,
 TOB-ORB-5 ,
 Appendix B

 ZBar’s QR decoder: A harness that tests only ZBar’s QR code
 decoder

 libFuzzer No crashes;
 Appendix B

 Trail of Bits 17 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity Fix Status

 1 User data may persist to disk if the
 swap space is ever configured

 Data
 Exposure

 Informational Partially
 Resolved

 2 Risk of wrong SSD health check
 space reported due to integer
 overflow

 Audit and
 Logging

 Low Resolved

 3 An expired token for a nonexistent
 API checked into source code

 Data
 Exposure

 Informational Resolved

 4 Memory safety issues in the ZBar
 library

 Data
 Validation

 High Resolved

 5 The Orb QR code scanner is
 configured to detect all code types

 Configuration Medium Resolved

 6 Core dumps are not disabled Configuration Informational Resolved

 7 World writable and readable
 sockets

 Configuration Undetermined Unresolved

 8 Opportunities to harden the static
 kernel configuration and runtime
 parameters

 Configuration Informational Partially
 Resolved

 9 The downloaded list of components
 to update is not verified

 Cryptography Informational Resolved

 10 Security issues in the HTTP client
 configuration

 Configuration Medium Partially
 Resolved

 11 External GitHub CI/CD action
 versions are not pinned

 Patching Medium Resolved

 Trail of Bits 18 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 12 The deserialize_message function
 can panic

 Data
 Validation

 Informational Unresolved

 Trail of Bits 19 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Detailed Findings

 1. User data may persist to disk if the swap space is ever configured

 Fix Status: Partially Resolved

 Severity: Informational Difficulty: High

 Type: Data Exposure Finding ID: TOB-ORB-1

 Target: orb-core

 Description
 The Orb software does not lock memory to RAM. This means that if the swap space is ever
 configured in the future, PII data such as user iris image data may be swapped to disk and
 persist there indefinitely.

 The severity of this finding is rated as informational because the device does not currently
 have the swap space configured (figure 1.1).

 root@localhost:/home/worldcoin# free -h
 total used free shared buff/cache available

 Mem: 6 .7Gi 456Mi 5 .7Gi 58Mi 604Mi 6 .0Gi
 Swap: 0B 0B 0B

 root@localhost:/home/worldcoin# swapon --summary
 root@localhost:/home/worldcoin#

 Figure 1.1: The test device does not have swap space configured.

 Recommendations
 Short term, use the mlock syscall to lock the memory where PII data is stored to RAM. This
 will prevent that memory from being paged to the swap area if the swap area is ever
 configured on the device.

 Long term, when the device is updated to Linux kernel version 5.14 or newer, consider
 using the memfd_secret syscall to further secure important memory areas. This syscall
 allows allocated memory to be unmapped in the kernel space, which may provide more
 security guarantees.

 Trail of Bits 20 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 2. Risk of wrong SSD health check space reported due to integer overflow

 Fix Status: Resolved

 Severity: Low Difficulty: Low

 Type: Audit and Logging Finding ID: TOB-ORB-2

 Target: orb-core/src/brokers/observer.rs

 Description
 The handle_ssd_health_check function (figure 2.1)—used to fill in the SSD health check
 status request, which is sent to the TFH back end—could report incorrect values due
 integer overflow. The function copies the values from the Stats structure (figure 2.2) to
 the Ssd structure fields; however, these fields are defined as i32 (figure 2.3), so the Stats
 values may overflow.

 As a result, the reported SSD disk space values will always be in the i32 range, which is
 from around -2 GB to 2 GB, or exactly in the range of -2,147,483,648 to 2,147,483,648 bytes,
 even if the read disk space values exceed this range.

 #[allow(clippy::cast_possible_truncation)]
 fn handle_ssd_health_check (& mut self , report: & ssd ::Stats) {

 self .status_request.ssd.space_left = report.available_space as _;
 self .status_request.ssd.file_left = report.documents as _;
 self .status_request.ssd.signup_left_to_upload = report.signups as _;

 }

 Figure 2.1: orb-core/src/brokers/observer.rs

 /// SSD statistics.
 pub struct Stats {

 /// Available space on the SSD.
 pub available_space: u64 ,
 /// Number of signups left to upload.
 pub signups: isize ,
 /// Number of files left to upload.
 pub documents: isize ,
 /// Number of files left to upload.
 pub documents_size: u64 ,

 }

 Figure 2.2: orb-core/src/ssd.rs

 Trail of Bits 21 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 pub struct Ssd {
 pub file_left: i32 ,
 pub space_left: i32 ,
 pub signup_left_to_upload: i32 ,

 }

 Figure 2.3: orb-core/src/backend/status.rs

 Exploit Scenario
 The Orb device has 21,474,836,482 bytes of disk space left, which is around 21 GB.
 However, the values copied from the Stats structure overflow, causing
 handle_ssd_health_check to report just 1 byte of space left to the back end.

 Recommendations
 Short term, change the types used in the Ssd structure to u64 so that its values can hold
 the full range of possible disk space values.

 Long term, add unit tests for this case. Consider banning the
 #[allow(clippy::cast_possible_truncation)] annotation from the code to prevent
 similar issues from happening in the future.

 Trail of Bits 22 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 3. An expired token for a nonexistent API checked into source code

 Fix Status: Resolved

 Severity: Informational Difficulty: Undetermined

 Type: Data Exposure Finding ID: TOB-ORB-3

 Target: orb-core/src/consts.rs

 Description
 One of the defined orb-core constants is an unused and expired
 DISTRIBUTOR_API_TOKEN token (figures 3.1–3.3). The token was used to communicate
 with an API that no longer exists. Nonetheless, such secret values should never be kept in
 plaintext in source code repositories, as they can become valuable tools to attackers if the
 repository is compromised or if an employee who should not have access to production
 tokens becomes malicious.

 /// Distributor API URL.
 pub const DISTRIBUTOR_API_URL: &str = "https://api.getworldcoin.com/v1/graphql" ;

 /// Distributor API Token.
 pub const DISTRIBUTOR_API_TOKEN: &str =
 "eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IlpVSUZ3Y0FXMGxBVEozSmxtQjRzWSJ9.eyJodH
 RwczovL2hhc3VyYS5pby9qd3QvY2xhaW1zIjp7IngtaGFzdXJhLWFsbG93ZWQtcm9sZXMiOlsib3JiIl0sIn
 gtaGFzdXJhLWF1dGgwLWlkIjoiYXV0aDB8NjA4MDYxZmUwZjAxN2EwMDY5YTZiZjIwIiwieC1oYXN1cmEtZG
 VmYXVsdC1yb2xlIjoib3JiIn0sIm5pY2tuYW1lIjoib3JiIiwibmFtZSI6Im9yYkB3b3JsZGNvaW4ub3JnIi
 wicGljdHVyZSI6Imh0dHBzOi8vcy5ncmF2YXRhci5jb20vYXZhdGFyLzliZTQwYzVlMzNkZWQyOGNjOGE1YT
 I5NTgwYWQ1M2FjP3M9NDgwJnI9cGcmZD1odHRwcyUzQSUyRiUyRmNkbi5hdXRoMC5jb20lMkZhdmF0YXJzJT
 JGb3IucG5nIiwidXBkYXRlZF9hdCI6IjIwMjEtMDQtMjFUMTc6NDA6NDAuNTAzWiIsImVtYWlsIjoib3JiQH
 dvcmxkY29pbi5vcmciLCJlbWFpbF92ZXJpZmllZCI6ZmFsc2UsImlzcyI6Imh0dHBzOi8vYXV0aC53b3JsZG
 NvaW4tZGlzdHJpYnV0b3JzLmNvbS8iLCJzdWIiOiJhdXRoMHw2MDgwNjFmZTBmMDE3YTAwNjlhNmJmMjAiLC
 JhdWQiOiJPVHpiZU5jVlFERjJZb3UyNkR6U2JQbEVQOXNUcjBMMyIsImlhdCI6MTYxOTAyNjg0MSwiZXhwIj
 oxNjUwMTMwODQxLCJhdF9oYXNoIjoic21TVzUtRVNUS0pPbXRwTEV3WWVuZyIsIm5vbmNlIjoiS0JERmx5X2
 1QSlllQ3FybE1wREN0c0kyczBBajBReXcifQ.gfScnofoSxFo7cHcmYu6dINfDGZRUEAPbCkARtR8gEnb4bN
 9kTFCKYhuGvUxXn4ffHjQUuu-qg4s5ABuqp9XddTYMZDYsEYw7lguiT68RSj9U18067ac6CP8Ltmg96g742K
 o27Dt-_7isKDT1CUI55pbO4tW1QY1B23hTGR6CFMN2cdgEOrSFh7kHHeRzLT20p7dqQ-k0WWyDraGMK9jzXo
 chzs5w10ziWYMvEWfg9gAXkUVR9ZxEvlHT2g1BKrcDH1Wyp-WdgdLg3d9AOYzNsaFi9kPg5u8QDUVsW5inaR
 KpF0FD0v4Q1B6oNlTEpU49a7v-VNVL0Uu6346r7_5Vg" ;

 Figure 3.1: orb-core/src/consts.rs

 { "alg" : "RS256" , "typ" : "JWT" , "kid" : "ZUIFwcAW0lATJ3JlmB4sY" }

 { "https://hasura.io/jwt/claims" :{ "x-hasura-allowed-roles" :["orb"], "x-hasura-auth0-id

 Trail of Bits 23 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 " : "auth0|608061fe0f017a0069a6bf20" , "x-hasura-default-role" : "orb" }, "nickname" : "orb" , "
 name" : "orb@worldcoin.org" , "picture" : "https://s.gravatar.com/avatar/9be40c5e33ded28cc
 8a5a29580ad53ac?s=480&r=pg&d=https%3A%2F%2Fcdn.auth0.com%2Favatars%2For.png" , "update
 d_at" : "2021-04-21T17:40:40.503Z" , "email" : "orb@worldcoin.org" , "email_verified" : false ,
 "iss" : "https://auth.worldcoin-distributors.com/" , "sub" : "auth0|608061fe0f017a0069a6bf
 20" , "aud" : "OTzbeNcVQDF2You26DzSbPlEP9sTr0L3" , "iat" : 1619026841 , "exp" : 1650130841 , "at_h
 ash" : "smSW5-ESTKJOmtpLEwYeng" , "nonce" : "KBDFly_mPJYeCqrlMpDCtsI2s0Aj0Qyw" }

 Figure 3.2: The header and payload fields decoded from the JWT shown in figure 3.1

 In [1]: from datetime import datetime

 In [2]: print (datetime.utcfromtimestamp(1650130841).strftime('%Y-%m- %d %H:%M:%S'))
 2022 - 04 - 16 17 : 40 : 41

 Figure 3.3: The expiration time (the "exp" claim highlighted in figure 3.2) converted to a
 datetime string, showing that the token has already expired

 Recommendations
 Short term, remove the hard-coded DISTRIBUTOR_API_TOKEN token and the
 DISTRIBUTOR_API_URL constants from the orb-core codebase, as those values are not
 used at all and the related API does not exist anymore.

 Long term, improve the CI/CD tooling used for the Orb to detect dead code such as this
 unused token.

 References
 ● GitHub Docs: Removing sensitive data from a repository

 Trail of Bits 24 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 4. Memory safety issues in the ZBar library

 Fix Status: Resolved

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-ORB-4

 Target: orb-core/qr-code/src/scanner.rs , ZBar library code

 Description
 The Orb uses the ZBar library , which has multiple memory safety issues. The library is used
 to scan user-provided QR codes with the identity commitment. We found two issues by
 fuzzing the zbar_scan_image function, which is directly used in the Orb’s Rust code.
 (Refer to appendix B for more information on our fuzzing of the ZBar library.)

 We identified the following issues related to memory:

 1. The match_segment_exp function may read a stack buffer out of bounds. The
 function is used when the Orb reads GS1 DataBar codes.

 2. The _zbar_sq_decode function has a memory leak issue. The function is used
 when the Orb reads Digital Seal SQCode codes, which are a variation of QR codes.
 The leak likely happens when the function encounters one of the error conditions
 and the allocated memory is not freed.

 3. ZBar’s QR code reader also seems to have a memory leak issue, as reported in
 mchehab/zbar#258 .

 We did not investigate the full impact of these issues or try to exploit them; nonetheless,
 the out-of-bounds stack buffer read could help attackers in exploiting the device and
 gaining the ability to execute code on it, and the two memory leaks can result in memory
 exhaustion, which would cause a denial of service.

 Also, while the first two issues are not related to QR codes, they still affect the Orb since the
 Orb will try to read most code types if not configured otherwise, as highlighted in finding
 TOB-ORB-5 . We confirmed this by constructing a fuzzing harness that uses the same
 configuration as the Orb. This means that the first two bugs we found would not be
 triggerable if the Orb were configured to scan only QR codes. However, the QR code
 scanner’s memory leak issue could still affect the Orb device.

 Trail of Bits 25 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Exploit Scenario
 An attacker shows the Orb a malicious barcode that uses a memory corruption
 vulnerability to give the attacker the ability to execute arbitrary code on the device. After
 taking control of the program, the attacker is able to exploit the Orb.

 Recommendations
 Short term, take the following actions:

 ● Disable scanning of barcode types other than QR codes, as recommended for fixing
 finding TOB-ORB-5 .

 ● Work with the ZBar library maintainers to fix the issues described in this finding and
 to release a fixed version of the ZBar library.

 Long term, extract out the functionality of QR code scanning to an external process and
 sandbox it so that it will have limited access if a vulnerability within it were exploited. This
 could be achieved with the help of the sandboxed-api tool .

 Trail of Bits 26 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 5. The Orb QR code scanner is configured to detect all code types

 Fix Status: Resolved

 Severity: Medium Difficulty: High

 Type: Configuration Finding ID: TOB-ORB-5

 Target: orb-core/qr-code/src/scanner.rs

 Description
 The Orb uses the ZBar library to scan user-provided QR codes. However, the ZBar library
 can scan different types of barcodes other than QR codes, and the Orb does not
 reconfigure the library to scan only QR codes. As a result, it may scan a barcode format that
 was not intended to be used with the Worldcoin Orb system. This increases the attack
 surface of the system and may lead to other issues, especially since the ZBar library has
 memory safety issues, as detailed in finding TOB-ORB-4 .

 Exploit Scenario
 An attacker finds a way to exploit a memory safety issue in the ZBar library by scanning a
 non–QR code image. They use this vulnerability to exploit the Orb device.

 Recommendations
 Short term, disallow detection of all code types except QR codes in the ZBar library. Use the
 zbar_image_scanner_set_config function to explicitly enable QR codes and disable
 other barcode types. Example code to do so is shown in figure 5.1 (though there may be a
 better method). Also, note that while some code types are not enabled by default in the
 ZBar library, it is still worth explicitly disabling them so that an update of the library cannot
 enable them.

 // Allow QR codes
 zbar_image_scanner_set_config(scanner, ZBAR_QRCODE, ZBAR_CFG_ENABLE, 1);
 // Disable all other types
 zbar_image_scanner_set_config(scanner, ZBAR_EAN2, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_EAN5, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_EAN8, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_UPCE, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_ISBN10, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_UPCA, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_EAN13, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_ISBN13, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_COMPOSITE, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_I25, ZBAR_CFG_ENABLE, 0);

 Trail of Bits 27 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 zbar_image_scanner_set_config(scanner, ZBAR_DATABAR, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_DATABAR_EXP, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_CODABAR, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_CODE39, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_PDF417, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_DATABAR, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_DATABAR_EXP, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_SQCODE, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_CODE93, ZBAR_CFG_ENABLE, 0);
 zbar_image_scanner_set_config(scanner, ZBAR_CODE128, ZBAR_CFG_ENABLE, 0);

 Figure 5.1: Example ZBar code to enable scanning of QR codes and to disable other barcode
 types

 Long term, add a functional, integration, or device test to ensure that the Orb device does
 not scan barcode types other than QR codes, such as with the example images from the
 ZBar repository and malicious barcodes from MalQR . Also, the ZBar library should be
 inspected every time it is updated to ensure that the available barcode types have not
 changed; this will prevent new and unexpected barcode types from being accepted by the
 Orb. Document this process internally to ensure it is done.

 Trail of Bits 28 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 6. Core dumps are not disabled

 Fix Status: Resolved

 Severity: Informational Difficulty: High

 Type: Configuration Finding ID: TOB-ORB-6

 Target: Kernel runtime parameters (sysctl)

 Description
 The Orb device does not have core dumps disabled in its kernel runtime parameters (figure
 6.1). If the generation of a core dump of one of the Worldcoin Orb processes is triggered,
 PII data could be persisted to the device disk.

 root@localhost:~# sysctl -a | grep core_
 kernel.core_pattern = core
 kernel.core_pipe_limit = 0
 kernel.core_uses_pid = 0

 Figure 6.1: The production device core dump configuration

 The severity of this finding is rated as informational because it is unlikely that a core dump
 can be generated with the current device configuration.

 For a core dump to be generated, the target process would have to run in a writable path,
 but the overlay path (/) is mounted as read-only on the production device (though some
 paths like the /tmp path are still writable). The target process would also need to have a
 nonzero core file size resource limit set. Nonetheless, since the current working directory
 and a resource limit of a process could change, it is still worth it to disable the core dumps
 completely.

 Recommendations
 Short term, disable core dumps by setting the kernel.core_pattern=/dev/null
 sysctl parameter. This can be done by creating a sysctl configuration file in the
 /etc/sysctl.d/99-worldcoin-disable-core-dumps.conf path when provisioning
 the device.

 References
 ● core Linux manual page

 ● Arch Linux: Core dumps

 Trail of Bits 29 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 7. World writable and readable sockets

 Fix Status: Unresolved

 Severity: Undetermined Difficulty: High

 Type: Configuration Finding ID: TOB-ORB-7

 Target: systemd socket configuration

 Description
 The socket files in the /tmp directory of the production device have permissions that are
 too broad. The camsock , nvscsock , and worldcoin_bus_socket sockets can be read
 and written to by any user on the system; additionally, the wpa_ctrl_1216-1 socket can
 be read by any user (figure 7.1).

 These permissions allow users or processes that should not have access to these sockets to
 access them; depending on the data that these sockets read/write, any user or process
 may be able to gain additional privileges or exploit the device.

 root@localhost:/home/worldcoin# ls -la --color=auto /tmp
 total 0
 drwxrwxrwt 12 root root 320 Aug 16 14 :07 .
 drwxrwxrwx 1 root root 211 Jul 9 09 :53 ..
 drwxrwxrwt 2 root root 40 Mar 27 17 :54 .ICE-unix
 drwxrwxrwt 2 root root 40 Mar 27 17 :54 .Test-unix
 drwxrwxrwt 2 root root 40 Mar 27 17 :54 .X11-unix
 drwxrwxrwt 2 root root 40 Mar 27 17 :54 .XIM-unix
 drwxrwxrwt 2 root root 40 Mar 27 17 :54 .font-unix
 srwxrwxrwx 1 root root 0 Mar 27 17 :54 camsock
 srwxrwxrwx 1 root root 0 Mar 27 17 :54 nvscsock
 drwx------ 2 worldcoin worldcoin 40 Aug 11 14 :22 pulse-PKdhtXMmr18n
 drwx------ 3 root root 60 Mar 27 17 :54
 systemd-private-a86ceebec50c43a3b1b3c79e36389670-haveged.service-2XXwnh
 drwx------ 3 root root 60 Mar 27 17 :54
 systemd-private-a86ceebec50c43a3b1b3c79e36389670-systemd-logind.service-etQOVh
 drwx------ 3 root root 60 Aug 14 20 :57
 systemd-private-a86ceebec50c43a3b1b3c79e36389670-systemd-resolved.service-EYsKKg
 drwx------ 3 root root 60 Aug 16 13 :13
 systemd-private-a86ceebec50c43a3b1b3c79e36389670-systemd-timesyncd.service-veio4h
 srw-rw-rw- 1 worldcoin worldcoin 0 Mar 27 17 :54 worldcoin_bus_socket
 srwxr-xr-x 1 root root 0 Mar 27 17 :54 wpa_ctrl_1216-1

 Figure 7.1: Permissions of sockets in the /tmp path that are too broad

 Trail of Bits 30 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Recommendations
 Short term, change the permissions with which the sockets are created so they have the
 least required permissions in order for the Worldcoin Orb software to function properly.
 Do not set any of the socket files to be readable or writable by any user of the system.

 Long term, add tests to ensure the production device never ends up with a world readable
 or writable socket file or any other important file.

 Trail of Bits 31 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 8. Opportunities to harden the static kernel configuration and runtime
 parameters

 Fix Status: Partially Resolved

 Severity: Informational Difficulty: High

 Type: Configuration Finding ID: TOB-ORB-8

 Target: Kernel configuration

 Description
 The Orb’s kernel configuration and runtime parameters can be improved to increase the
 overall security of the device and its applications and to decrease the potential attack
 surface.

 The following table shows the runtime parameters that can be hardened. These
 parameters can be read from the device by reading files under the /proc/sys/ path or
 through the sysctl utility tool. (Some parameters require root privileges to be read.)

 Parameter Current
 Value

 Recommendation

 kernel.kptr_restrict 1 Set the parameter to 2 to prevent kernel pointers from
 being leaked, even to privileged processes.

 kernel.unprivileged_
 bpf_disabled

 0 Set the parameter to 1 to prevent unprivileged processes
 from using the bpf syscall. Refer also to the notes
 regarding this parameter below the table.

 net.core.bpf_jit_ena
 ble

 1 Set the parameter to 0 to disable the BPF JIT mechanism.
 The BPF JIT mechanism increases the attack surface of
 the kernel.

 net.core.bpf_jit_har
 den

 0 If the BPF JIT mechanism is still enabled, set the
 parameter to 2 to enable hardening for the BPF JIT
 compiler.

 bpf_jit_kallsyms 1 If the BPF JIT mechanism is still enabled, set the
 parameter to 0 to disable the exporting of kernel
 symbols for the BPF JIT mechanism.

 Trail of Bits 32 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Regarding BPF, the bpf syscall can be used by unprivileged processes as long as the
 kernel.unprivileged_bpf_disabled sysctl option is disabled , which is its default
 value. While this syscall should not allow a user or process to escalate privileges or crash
 the system, it had bugs in the past that did allow such actions, such as CVE-2023-0160 ,
 CVE-2022-2785 , CVE-2022-0500 , CVE-2021-4204 , CVE-2020-8835 , and CVE-2017-16995 .
 (Refer also to this blog post on the CVE-2017-16995 bug.)

 The kernel configuration can also be improved. We scanned the configuration from the
 provided development device with the kconfig-hardened-check project (as the
 production device is already hardened and does not expose its kernel configuration). The
 results from this scan are provided in appendix C .

 Recommendations
 Short term, adjust the sysctl options as recommended in this finding. This will harden the
 device and lower its attack surface.

 Long term, take the following actions:

 ● Use the kernel lockdown feature to prevent certain modifications to the kernel
 image and certain configuration options. This feature was added in version 5.4 of
 the Linux kernel.

 ● Rebuild the Linux kernel and harden its configuration options according to the
 kconfig-hardened-check project results provided in appendix C .

 Trail of Bits 33 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 9. The downloaded list of components to update is not verified

 Fix Status: Resolved

 Severity: Informational Difficulty: High

 Type: Cryptography Finding ID: TOB-ORB-9

 Target: orb-update-agent/update-agent/src/main.rs

 Description
 When the orb-update-agent service downloads an update claim that contains the list of
 components to be updated, it does not verify the claim’s signature field (figure 9.1). As a
 result, if a malicious Orb server attempts to hijack an Orb device by serving it a malicious
 update claim, the orb-update-agent service would not detect that the claim is malicious.

 The severity of this finding is rated as informational because the code contains a
 commented-out signature verification check with a “TODO” comment indicating plans to
 enable it (figure 9.2).

 Additionally, the Orb uses the dm-verity Linux kernel feature to ensure the runtime
 integrity of the filesystems. We have not checked the efficacy of this feature, but the use of
 it should prevent a malicious update from being used.

 #[derive(Serialize, Debug)]
 pub struct Claim {

 version: String ,
 manifest: crate ::Manifest,
 #[serde(rename = "manifest-sig")]
 signature: String ,
 sources: HashMap < String , Source>,
 system_components: crate ::Components,

 }

 Figure 9.1: The signature field in the Claim structure
 (orb-update-agent/update-agent-core/src/claim.rs)

 fn run () -> eyre :: Result <()> {
 ...
 // TODO: Enable signature verification
 // let mut file = std::fs::File::open(settings.pubkey).expect("failed to open

 pubkey");
 // let mut contents: Vec<u8> = Vec::new();
 // file.read_to_end(&mut contents)?;

 Trail of Bits 34 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 //
 // debug!("len: {:?}", contents.len());

 // let public_key = ring::signature::UnparsedPublicKey::new(
 // &ring::signature::RSA_PKCS1_1024_8192_SHA256_FOR_LEGACY_USE_ONLY,
 // contents,
 //);

 // claim.verify(public_key)?;

 Figure 9.2: The commented-out signature verification check
 (orb-update-agent/update-agent/src/main.rs)

 Recommendation
 Short term, add the update claim signature verification check.

 Trail of Bits 35 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 10. Security issues in the HTTP client configuration

 Fix Status: Partially Resolved

 Severity: Medium Difficulty: High

 Type: Configuration Finding ID: TOB-ORB-10

 Target: orb-update-agent/update-agent/src/main.rs

 Description
 Both the orb-core and orb-update-agent codebases use a similar HTTP client
 configuration, but each has its own code to initialize an HTTP client (figures 10.1 and 10.2).
 We identified the following issues with that code:

 ● The clients do not have a minimum TLS version set, which should be 1.3.

 ● The orb-update-agent service does not restrict the client to use only HTTPS
 requests.

 ● The clients do not have redirects disabled. As a result, a malicious server could
 perform a server-side request forgery (SSRF) attack on the client, making it hit some
 of its internal resources.

 Additionally, the clients are currently set to trust the Amazon and Google Trust Services
 root certificates. While this is better than trusting all default root certificates, it still creates
 the risk of system compromise by a malicious third-party. The TFH team knows about this
 issue and has a long-term goal to use a private CA in the future.

 fn initialize () -> Result <Client, Error> {
 let amazon_cert = AMAZON_ROOT_CA_1_CERT

 .get_or_try_init(|| Certificate::from_pem(AMAZON_ROOT_CA_1_PEM))
 .map_err(Error::CreateAmazonRootCa1Cert)?
 .clone();

 let google_cert = GTS_ROOT_R1_CERT
 .get_or_try_init(|| Certificate::from_pem(GTS_ROOT_R1_PEM))
 .map_err(Error::CreateGtsRootR1Cert)?
 .clone();

 Client::builder()
 .add_root_certificate(amazon_cert)
 .add_root_certificate(google_cert)
 .tls_built_in_root_certs(false)
 .user_agent(APP_USER_AGENT)
 .timeout(Duration::from_secs(120))

 Trail of Bits 36 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 .build()
 .map_err(Error::BuildClient)

 }

 Figure 10.1: orb-update-agent/update-agent/src/client.rs

 /// Creates a new HTTP client.
 ///
 /// # Panics
 ///
 /// If [`init_cert`] hasn't been called yet.
 pub fn client () -> reqwest :: Result <reqwest::Client> {

 reqwest::Client::builder()
 .user_agent(APP_USER_AGENT)
 .timeout(REQUEST_TIMEOUT)
 .connect_timeout(CONNECT_TIMEOUT)
 .tls_built_in_root_certs(false)
 .add_root_certificate(

 AWS_CA_CERT.get().expect("the AWS root certificate is not
 initialized").clone(),

)
 .add_root_certificate(

 GTS_CA_CERT.get().expect("the GTS root certificate is not
 initialized").clone(),

)
 .https_only(true)
 .build()

 }

 Figure 10.2: orb-core/src/backend/mod.rs

 Exploit Scenario 1
 An attacker finds a way to make the orb-update-agent service connect to the back end
 via HTTP. Since the HTTP client does not enforce HTTPS, the attacker is able to perform a
 person-in-the-middle attack against the updater and further attack the device.

 Exploit Scenario 2
 A sophisticated malicious actor who has access to the AWS/GTS root certificate and is in a
 person-in-the-middle position against the Orb device creates an HTTPS certificate for the
 TFH back-end domain and attacks the device by spoofing the TFH back-end server with the
 created certificate.

 Recommendations
 Short term, take the following actions:

 ● Set a minimum TLS version. This can be done by calling the min_tls_version
 method in the request client builder object. Ideally, the minimum version should be
 set to 1.3. However, the currently used native-tls back end does not allow 1.3 to

 Trail of Bits 37 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 be set as the minimum TLS version. Because of that, we also recommend switching
 to a different back end that allows 1.3 to be set as the minimum version.

 ● Enforce the use of HTTPS-only connections in the orb-update-agent HTTP client.
 This can be done by calling the https_only(true) method in the request client
 builder object.

 ● Move the implementation of the two HTTP request clients from orb-core and
 orb-update-agent to a utility library. This will allow the same HTTP client
 configuration to be used by both codebases.

 ● Disable redirects in the clients by calling the redirect(Policy::none()) method
 on the request client builder object. This will prevent SSRF attacks from malicious
 servers against the Orb device.

 Long term, take the following actions:

 ● Create and pin a TFH root certificate.

 ● Authenticate the device on the server with client certificates.

 These actions will ensure that the device connects to a legitimate TFH server, reduce risks
 stemming from trust in certificates from third parties, and prevent fake devices from
 connecting to the server.

 References
 ● OWASP: Pinning Cheat Sheet

 ● sfackler/rust-native-tls#140 : An issue related to the lack of TLS 1.3 support
 in the native-tls back end

 Trail of Bits 38 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 11. External GitHub CI/CD action versions are not pinned

 Fix Status: Resolved

 Severity: Medium Difficulty: Medium

 Type: Patching Finding ID: TOB-ORB-11

 Target: GitHub Actions workflows and actions

 Description
 The GitHub Actions pipelines use several third-party actions. These actions are part of the
 supply chain for TFH’s CI/CD pipelines and can execute arbitrary code in the pipelines. A
 security incident in any of the third-party GitHub accounts or organizations can lead to a
 compromise of the CI/CD pipelines and any artifacts they produce.

 This issue does not impact the release builds of the Orb software since they are not built
 through the GitHub Actions CI/CD workflows.

 The following actions are owned by GitHub organizations that might not be affiliated
 directly with the API/software they are managing:

 ● EndBug/add-and-commit@v9
 ● actions/cache@v3
 ● actions/checkout@v1
 ● actions/checkout@v2
 ● actions/checkout@v3
 ● actions/download-artifact@v2
 ● actions/download-artifact@v3
 ● actions/setup-python@v2
 ● actions/setup-python@v3
 ● actions/setup-python@v4
 ● actions/upload-artifact@v2
 ● actions/upload-artifact@v3
 ● arduino/setup-protoc@v1
 ● aws-actions/configure-aws-credentials@v2
 ● cachix/cachix-action@v12
 ● cachix/install-nix-action@v22
 ● dawidd6/action-get-tag@v1 (archived)
 ● docker/build-push-action@v3
 ● docker/setup-buildx-action@v2
 ● docker/setup-qemu-action@v2

 Trail of Bits 39 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 ● dtolnay/rust-toolchain@1.62.0
 ● dtolnay/rust-toolchain@1.64.0
 ● dtolnay/rust-toolchain@1.67.1
 ● dtolnay/rust-toolchain@nightly
 ● goto-bus-stop/setup-zig@v1
 ● goto-bus-stop/setup-zig@v2
 ● marocchino/sticky-pull-request-comment@v2
 ● softprops/action-gh-release@v1
 ● taiki-e/install-action@parse-changelog

 Note that we included GitHub actions from organizations like GitHub Actions and Docker
 even though TFH already implicitly trusts these organizations by virtue of using their
 software. However, if any of their repositories is hacked, that may impact TFH’s CI builds.

 Exploit Scenario
 A private GitHub account with write permissions from one of the untrusted GitHub actions
 is taken over by social engineering (e.g., a user is using an already leaked password and is
 convinced to send a 2FA code to an attacker). The attacker updates the GitHub action to
 include code to exfiltrate the code and secrets in CI/CD pipelines that use that action,
 including the TFH CI/CD pipelines.

 Recommendations
 Short term, pin all external and third-party actions to a Git commit hash. Avoid pinning
 them to a Git tag, as tags can be changed after creation. We also recommend using the
 pin-github-action tool to manage pinned actions. GitHub Dependabot is capable of
 updating GitHub actions that use commit hashes.

 Long term, audit all pinned actions or replace them with a custom implementation.

 Trail of Bits 40 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 12. The deserialize_message function can panic

 Fix Status: Unresolved

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-ORB-12

 Target: orb-core/src/port.rs

 Description
 The deserialize_message function does not have a limit on the size value that is
 decoded from the received buffer, so the process can panic if the decoded size exceeds the
 size of the provided buffer (figure 12.1). This may lead to a program crash if the data comes
 from an untrusted source.

 The severity of this finding is rated as informational because this function is used to
 exchange data between Orb processes and we did not find a way to trigger a panic from
 untrusted input.

 unsafe fn deserialize_message <T>(buf: & [u8]) -> & T ::Archived
 where

 T: Archive + for <'a> Serialize<SharedSerializer<'a>>,
 {

 let size =
 usize ::from_ne_bytes(buf[..mem::size_of::< usize >()].try_into().unwrap());

 let bytes = &buf[mem::size_of::< usize >()..mem::size_of::< usize >() + size];
 unsafe { rkyv::archived_root::<T>(bytes) }

 }

 Figure 12.1: orb-core/src/port.rs

 Recommendations
 Short term, change the deserialize_message function to return an error if it fails to
 deserialize a buffer.

 Long term, add tests or fuzzing for the deserialize_message function to make sure it
 works as expected when receiving invalid inputs and does not crash the program.

 Trail of Bits 41 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 42 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 43 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 B. ZBar Library Fuzzing

 We discovered that the ZBar library used by the Orb to scan QR codes is not fuzz tested
 continuously . Given that the library serves as an entry point to the system, we decided to
 run our own fuzzing campaign against it to test its security.

 We developed a few fuzzing harnesses using the libFuzzer fuzz testing framework and
 AddressSanitizer against the ZBar library version that is used in the Orb device (version
 0.23.90). This helped us find the memory safety issues described in finding TOB-ORB-4 .

 The developed fuzzing harnesses were shared with the Worldcoin Orb team and with the
 ZBar library maintainers. We agreed to redact the rest of this appendix because the found
 bugs were not fixed during the assessment, and doing so prevents the easy discovery of
 other bugs. We also shared the fuzzing harnesses with the ZBar library maintainers and
 suggested that they integrate them into the OSS-Fuzz project to find issues continuously.

 Trail of Bits 44 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 C. Kernel Configuration Hardening Recommendations

 This appendix is an addition to the TOB-ORB-8 finding. We retrieved the kernel
 configuration from the provided development device by reading its /proc/config.gz file.
 We scanned the resulting configuration with the kconfig-hardened-check project. The
 results that failed the checks are provided in figure C.1.

 Note that the production device runs a slightly more hardened configuration, so it does not
 expose its kernel configuration in the same way as the development device does.
 Nonetheless, we recommend inspecting the production device configuration and
 hardening it further.

 dc@ns3203937:~$ kconfig-hardened-check -c kernel.config | grep FAIL
 CONFIG_IOMMU_DEFAULT_DMA_STRICT |kconfig| y |defconfig | self_protection | FAIL: is not found
 CONFIG_ARM64_EPAN |kconfig| y |defconfig | self_protection | FAIL: is not found
 CONFIG_RODATA_FULL_DEFAULT_ENABLED |kconfig| y |defconfig | self_protection | FAIL: "is not set"
 CONFIG_ARM64_PTR_AUTH_KERNEL |kconfig| y |defconfig | self_protection | FAIL: is not found
 CONFIG_ARM64_BTI_KERNEL |kconfig| y |defconfig | self_protection | FAIL: is not found
 CONFIG_MITIGATE_SPECTRE_BRANCH_HISTORY |kconfig| y |defconfig | self_protection | FAIL: is not found
 CONFIG_KFENCE |kconfig| y | kspp | self_protection | FAIL: is not found
 CONFIG_ZERO_CALL_USED_REGS |kconfig| y | kspp | self_protection | FAIL: is not found
 CONFIG_HW_RANDOM_TPM |kconfig| y | kspp | self_protection | FAIL: is not found
 CONFIG_STATIC_USERMODEHELPER |kconfig| y | kspp | self_protection | FAIL: "is not set"
 CONFIG_RANDSTRUCT_FULL |kconfig| y | kspp | self_protection | FAIL: is not found
 CONFIG_RANDSTRUCT_PERFORMANCE |kconfig| is not set | kspp | self_protection | FAIL: CONFIG_RANDSTRUCT_FULL is
 not "y"
 CONFIG_GCC_PLUGIN_LATENT_ENTROPY |kconfig| y | kspp | self_protection | FAIL: "is not set"
 CONFIG_MODULE_SIG_FORCE |kconfig| y | kspp | self_protection | FAIL: "is not set"
 CONFIG_INIT_STACK_ALL_ZERO |kconfig| y | kspp | self_protection | FAIL: is not found
 CONFIG_GCC_PLUGIN_STACKLEAK |kconfig| y | kspp | self_protection | FAIL: "is not set"
 CONFIG_STACKLEAK_METRICS |kconfig| is not set | kspp | self_protection | FAIL: CONFIG_GCC_PLUGIN_STACKLEAK
 is not "y"
 CONFIG_STACKLEAK_RUNTIME_DISABLE |kconfig| is not set | kspp | self_protection | FAIL: CONFIG_GCC_PLUGIN_STACKLEAK
 is not "y"
 CONFIG_RANDOMIZE_KSTACK_OFFSET_DEFAULT |kconfig| y | kspp | self_protection | FAIL: is not found
 CONFIG_CFI_CLANG |kconfig| y | kspp | self_protection | FAIL: is not found
 CONFIG_CFI_PERMISSIVE |kconfig| is not set | kspp | self_protection | FAIL: CONFIG_CFI_CLANG is not "y"
 CONFIG_WERROR |kconfig| y | kspp | self_protection | FAIL: is not found
 CONFIG_SHADOW_CALL_STACK |kconfig| y | kspp | self_protection | FAIL: is not found
 CONFIG_KASAN_HW_TAGS |kconfig| y | kspp | self_protection | FAIL: is not found
 CONFIG_SECURITY_YAMA |kconfig| y | kspp | security_policy | FAIL: "is not set"
 CONFIG_SECURITY_LANDLOCK |kconfig| y | kspp | security_policy | FAIL: is not found
 CONFIG_BPF_UNPRIV_DEFAULT_OFF |kconfig| y |defconfig |cut_attack_surface| FAIL: "is not set"
 CONFIG_COMPAT |kconfig| is not set | kspp |cut_attack_surface| FAIL: "y"
 CONFIG_MODULES |kconfig| is not set | kspp |cut_attack_surface| FAIL: "y"
 CONFIG_DEVMEM |kconfig| is not set | kspp |cut_attack_surface| FAIL: "y"
 CONFIG_IO_STRICT_DEVMEM |kconfig| y | kspp |cut_attack_surface| FAIL: "is not set"
 CONFIG_GENERIC_TRACER |kconfig| is not set | grsec |cut_attack_surface| FAIL: "y"
 CONFIG_FUNCTION_TRACER |kconfig| is not set | grsec |cut_attack_surface| FAIL: "y"
 CONFIG_STACK_TRACER |kconfig| is not set | grsec |cut_attack_surface| FAIL: "y"
 CONFIG_PROC_VMCORE |kconfig| is not set | grsec |cut_attack_surface| FAIL: "y"
 CONFIG_DEBUG_FS |kconfig| is not set | grsec |cut_attack_surface| FAIL: "y"
 CONFIG_FAIL_FUTEX |kconfig| is not set | grsec |cut_attack_surface| OK: is not found
 CONFIG_KCMP |kconfig| is not set | grsec |cut_attack_surface| FAIL: "y"
 CONFIG_RSEQ |kconfig| is not set | grsec |cut_attack_surface| FAIL: "y"
 CONFIG_FB |kconfig| is not set |maintainer|cut_attack_surface| FAIL: "y"
 CONFIG_VT |kconfig| is not set |maintainer|cut_attack_surface| FAIL: "y"
 CONFIG_STAGING |kconfig| is not set | clipos |cut_attack_surface| FAIL: "y"
 CONFIG_KALLSYMS |kconfig| is not set | clipos |cut_attack_surface| FAIL: "y"
 CONFIG_EFI_CUSTOM_SSDT_OVERLAYS |kconfig| is not set | clipos |cut_attack_surface| FAIL: "y"
 CONFIG_COREDUMP |kconfig| is not set | clipos |cut_attack_surface| FAIL: "y"
 CONFIG_BPF_SYSCALL |kconfig| is not set | lockdown |cut_attack_surface| FAIL: "y"
 CONFIG_FTRACE |kconfig| is not set | my |cut_attack_surface| FAIL: "y"
 CONFIG_TRIM_UNUSED_KSYMS |kconfig| y | my |cut_attack_surface| FAIL: "is not set"
 CONFIG_ARCH_MMAP_RND_BITS |kconfig| 33 | my | harden_userspace | FAIL: "18"
 [+] Config check is finished: 'OK' - 138 / 'FAIL' - 48

 Figure C.1: Kernel hardening suggestions from the kconfig-hardened-check project

 Trail of Bits 45 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 D. systemd Security Analysis

 We executed systemd-analyze security $SERVICE to analyze the following production
 services:

 ● worldcoin-coarse-location-cacher.service
 ● worldcoin-security-mcu-logger.service
 ● worldcoin-supervisor.service
 ● worldcoin-core.service
 ● worldcoin-short-lived-token-daemon.service
 ● worldcoin-update-agent.service
 ● worldcoin-dbus.service
 ● Worldcoin-short-lived-token-dumb-client.service

 The following lints failed for all services. We recommend conducting a manual review of
 each of them:

 ● Service has access to the host’s network
 ● Service has administrator privileges
 ● Service may allocate Internet sockets
 ● Service may override UNIX file/IPC permission checks
 ● Files created by service are world-readable by default
 ● Service has full access to home directories
 ● Service has access to other software’s temporary files
 ● Service may modify the control group file system
 ● Service has full access to the OS file hierarchy

 The following lints failed for some services but are considered of secondary importance or
 are intended to fail:

 ● Service runs under a static non-root user identity
 ● Service may change UID/GID identities/capabilities
 ● Service has ptrace() debugging abilities
 ● Service may create user namespaces
 ● Service may allocate exotic sockets
 ● Service may change file ownership/access mode/capabilities unrestricted
 ● Service has network configuration privileges
 ● Service has raw I/O access
 ● Service may load kernel modules
 ● Service processes may change the system clock
 ● Service has no device ACL
 ● Service does not define an IP address whitelist
 ● Service processes may acquire new privileges

 Trail of Bits 46 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 ● Service potentially has access to hardware devices
 ● Service may install system mounts
 ● Service has access to other users
 ● Service may write to the hardware clock or system clock
 ● Service may read from or write to the kernel log ring buffer
 ● Service may load or read kernel modules
 ● Service may alter kernel tunables
 ● Service may allocate packet sockets
 ● Service may create SUID/SGID files
 ● Service may execute system calls with all ABIs
 ● Service does not filter system calls
 ● Service process receives ambient capabilities
 ● Service has audit subsystem access
 ● Service may send UNIX signals to arbitrary processes
 ● Service may create device nodes
 ● Service has elevated networking privileges
 ● Service has access to kernel logging
 ● Service has privileges to change resource use parameters
 ● Service may create cgroup namespaces
 ● Service may create IPC namespaces
 ● Service may create network namespaces
 ● Service may create file system namespaces
 ● Service may create process namespaces
 ● Service may acquire realtime scheduling
 ● Service may allocate netlink sockets
 ● Service runs within the host’s root directory
 ● Service may adjust SMACK MAC
 ● Service may issue reboot()
 ● Service may change ABI personality
 ● Service may create writable executable memory mappings
 ● Service user may leave SysV IPC objects around
 ● Service may create hostname namespaces
 ● Service may mark files immutable
 ● Service may issue chroot()
 ● Service may change system host/domain name
 ● Service may establish wake locks
 ● Service may create file leases
 ● Service may use acct()
 ● Service may issue vhangup()
 ● Service may program timers that wake up the system
 ● Service may allocate local sockets

 Trail of Bits 47 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 The following lints passed for all services:

 ● Service may lock memory into RAM
 ● Service does not maintain its own delegated control group subtree
 ● Service doesn’t share key material with other services
 ● Service has no supplementary groups
 ● Service child processes cannot alter service state

 Trail of Bits 48 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 E. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 From December 4 to December 6, 2023, Trail of Bits reviewed the fixes and mitigations
 implemented by the TFH team for the issues identified in this report. We reviewed each fix
 to determine its effectiveness in resolving the associated issue.

 In summary, of the 12 issues described in this report, TFH has resolved five issues, has
 partially resolved five issues, and has not resolved the remaining two issues. For additional
 information, please see the Detailed Fix Review Results below.

 ID Title Severity Difficulty Status

 1 User data may persist to disk if
 the swap space is ever configured

 Informational High Partially
 Resolved

 2 Risk of wrong SSD health check
 space reported due to integer
 overflow

 Low Low Resolved

 3 An expired token for a
 nonexistent API checked into
 source code

 Informational Undetermined Resolved

 4 Memory safety issues in the ZBar
 library

 High High Resolved

 5 The Orb QR code scanner is
 configured to detect all code types

 Medium High Resolved

 6 Core dumps are not disabled Informational High Resolved

 7 World writable and readable
 sockets

 Undetermined High Unresolved

 Trail of Bits 49 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 8 Opportunities to harden the static
 kernel configuration and runtime
 parameters

 Informational High Partially
 Resolved

 9 The downloaded list of
 components to update is not
 verified

 Informational High Resolved

 10 Security issues in the HTTP client
 configuration

 Medium High Partially
 Resolved

 11 External GitHub CI/CD action
 versions are not pinned

 Medium Medium Resolved

 12 The deserialize_message function
 can panic

 Informational High Unresolved

 Detailed Fix Review Results
 TOB-ORB-1: User data may persist to disk if the swap space is ever configured
 Partially resolved. The memory pages holding PII are still at risk of being persisted if the
 swap space is ever used. The device does not use the swap space, so the risk does not exist
 in the current configuration. We still recommend using the mlock system call on memory
 pages containing PII as a hardening/second-line-of-defense measure.

 TOB-ORB-2: Risk of wrong SSD health check space reported due to integer overflow
 Resolved in orb-core/#791 . The types used in the Ssd structure were changed to i64 to
 account for the possibility of an error. Even though we recommended using the u64 type,
 the i64 type can represent all of the real-life scenarios.

 TOB-ORB-3: An expired token for a nonexistent API checked into source code
 Resolved in orb-core/#843 . The API token was removed from the code.

 TOB-ORB-4: Memory safety issues in the ZBar library
 Resolved in orb-core/#942 . A new barcode scanning library, rxing , was added. It is
 written in Rust, which significantly reduces the chance of encountering memory safety
 issues. At the time of the fix review, the original ZBar scanning code was still in place
 behind a configuration flag.

 The client provided the following context for this finding’s fix status:

 Trail of Bits 50 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 The configuration option to re-enable zbar was only used for testing, and the production
 software will ship with rxing as the only QR scanning library. zbar will not even be
 installed on production devices.

 TOB-ORB-5: The Orb QR code scanner is configured to detect all code types
 Resolved in orb-core/#942 . A new barcode scanning library, rxing , was added. It is
 configured to detect QR codes only. At the time of the fix review, the original ZBar scanning
 code was still in place behind a configuration flag.

 The client provided the following context for this finding’s fix status:

 The configuration option to re-enable zbar was only used for testing, and the production
 software will ship with rxing as the only QR scanning library. zbar will not even be
 installed on production devices.

 TOB-ORB-6: Core dumps are not disabled
 Resolved in orb-os/#2 . The Linux kernel build configuration was updated with the
 CONFIG_COREDUMP=n option, which disables core dumps.

 TOB-ORB-7: World writable and readable sockets
 Unresolved. The client provided the following context for this finding’s fix status:

 Marked as no-fix.

 TOB-ORB-8: Opportunities to harden the static kernel configuration and runtime
 parameters
 Partially resolved in orb-os/#2 . The bpf syscall was disabled, eliminating BPF-related
 attack vectors. However, the kernel.kptr_restrict option was not configured per our
 recommendation. The PR also enabled KASLR; however, this change was rolled back due to
 a UEFI crash. We recommend enabling KASLR once doing so is possible, as it is a strong
 kernel exploit mitigation protection.

 TOB-ORB-9: The downloaded list of components to update is not verified
 Resolved in orb-update-agent/#232 and orb-os/#151 . The code that verifies the
 signature was implemented.

 TOB-ORB-10: Security issues in the HTTP client configuration
 Partially resolved in orb-update-agent/fade320 , orb-update-agent/ac33088 ,
 orb-update-agent/a49705d , and orb-core/#973 . The TFH team implemented all of
 our recommendations for the HTTP client configuration in orb-update-agent . However,
 the HTTP client configuration in orb-core is still missing the option that enforces the
 minimum TLS version.

 Trail of Bits 51 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 TOB-ORB-11: External GitHub CI/CD action versions are not pinned
 Resolved in orb-core/#918 , orb-supervisor/#33 , TrustZone/#30 ,
 orb-update-agent/#239 , plug-and-trust/#69 , orb-mcu-firmware/#457 , and
 orb-control-api-client/#135 . The external actions were pinned to their respective
 hashes.

 TOB-ORB-12: The deserialize_message function can panic
 Unresolved. The client provided the following context for this finding’s fix status:

 Marked as no-fix.

 Trail of Bits 52 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

 F. Fix Review Status Categories

 The following table describes the statuses used to indicate whether an issue has been
 sufficiently addressed.

 Fix Status

 Status Description

 Undetermined The status of the issue was not determined during this engagement.

 Unresolved The issue persists and has not been resolved.

 Partially Resolved The issue persists but has been partially resolved.

 Resolved The issue has been sufficiently resolved.

 Trail of Bits 53 Worldcoin Orb Security Assessment
 PUBLIC

Bi
tK
E

